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1 Introduction to the Workshop

This is a quick introduction to the applications of R handling and analysing GIS data sets. This
workshop is organised by the project ARBONETH (The Ethiopian Arboretum Project, http://www.
arboneth.com/), which is founded by the German Academic Exchange Service (DAAD) and the
Federal Ministry for Economic Cooperation and Development (BMZ).

1.1 Installing Instructions

For the workshop’s sessions you have to install RStudio, R (usually installed through RStudio) and QGIS
(used only to visualise GIS data) in your computer. Additionally you may require to install Java (required
for some of the previous software), Adobe Acrobat Reader (required to read this document) and Google
Earth.

For the work with R there are a series of packages required for the sessions. Such packages will be
distributed by the tutors but they can also be downloaded from The Comprehensive R Archive Network
(CRAN).

1.2 Data Sets

The current handout is a tutorial including exercises that will be discussed in more detail during theo-
retical sessions. Some additional exercises are also provided for the afternoon sessions.

Files required for the exercises will be distributed among the participants to the workshop, organized in
a working directory (project folder) containing four subfolders, namely inputs (input tables), vectors
(vector files such as ESRI shapefiles), rasters (raster data sets), and outputs (folder to write outputs
generated during R sessions).

2 Basics on R

The basic component of R is the console, which is the interface where you write and execute command
lines. You will also work with scripts, that are text files compiling command lines. The workspace is
the virtual place containing information structured in objects. The working directory is the folder,
where R will search for data to load and where data will be written. Finally, the history is a record of
command lines executed during a session.

Objects are structures containing data or functions in R. Such objects may belong to a class, which
determines the properties or attributes of the object. Herewith the basic class of object in R is the
vector.

2.1 Vectors and Matrices

A vector is a concatenation of values. Besides the length (the only dimension of a vector), the values
contained in the vector may belong to a mode. Herewith only one mode is allowed for the content of a
vector. Modes for data are logical, numeric, factor, complex and character. Additional modes used
for programming purposes are function, formula and expression. The following are some alternative
ways to generate vectors are:

> rep(5, times=10)

[1] 5 5 5 5 5 5 5 5 5 5

> seq(from=10, to=100, by=10)

[1] 10 20 30 40 50 60 70 80 90 100
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> sample(letters, size=10, replace=TRUE)

[1] "u" "n" "d" "v" "e" "r" "m" "s" "t" "t"

> c("Peter","Piper","picked","a","peck","of","pickled","peppers")

[1] "Peter" "Piper" "picked" "a" "peck" "of" "pickled"

[8] "peppers"

The previously generated vectors were displayed in the console, but they are not available for further
routines. For it, you have to create new objects in the workspace, containing the respective values. That
is to say, you may assign the values to new objects. Such operation is carried out by using the arrow
symbol (<-).

> A <- seq(from=1, to=10)

> B <- seq(from=10, to=1)

The vectors A and B are numeric ones and this can be confirmed by is.numeric(A), then R will
answer you TRUE. You can also ask using class(A).

While in the previous example vectors are generated by functions, some operations may also result in
vectors.

> # Mathematical operations

> A + B

[1] 11 11 11 11 11 11 11 11 11 11

> A*B

[1] 10 18 24 28 30 30 28 24 18 10

> # Logical operations

> set.seed(58)

> C <- sample(letters, size=10, replace=TRUE)

> C == "p" # are values of C equal to "p"?

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

> C != "a" # are values of C different from "a"?

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

There are several ways allowing access to elements contained in a vector. The most common is using
square brackets as displayed in the console. In such brackets you can indicate the position of elements
through integer values. Negative integers indicate elements to be excluded. It is also possible to use
logic values, whereupon TRUE indicates elements to be included and FALSE indicates elements to be
excluded.

> # Access to elements of a vector

> B[5] # using number

> B[1:5] # using numeric vector

> B[-5] # using negative number

> B[B != 7] # using logical vector

Additionally to it, there is also the possibility to name the elements of a vector and access to them
using those names as identity.

> names(B) <- LETTERS[1:length(B)]

> B

A B C D E F G H I J

10 9 8 7 6 5 4 3 2 1

> B[c("C","F","H")]

C F H

8 5 3

The matrix is in R a vector with 2 dimensions assigned as attribute. Notice that while in mathe-
matics a vector is a special case of matrix, in R is the other way round. To produce a matrix you can
use the functions matrix, rbind (binding rows), or cbind (binding columns).
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> # matrix using function matrix

> matrix(1:20, nrow=5)

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

> matrix(1:20, ncol=5, byrow=TRUE)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

[4,] 16 17 18 19 20

> # matrix using functions cbind and rbind

> cbind(A,B)

A B

A 1 10

B 2 9

C 3 8

D 4 7

E 5 6

F 6 5

G 7 4

H 8 3

I 9 2

J 10 1

> rbind(A,B)

A B C D E F G H I J

A 1 2 3 4 5 6 7 8 9 10

B 10 9 8 7 6 5 4 3 2 1

The access to single elements in the matrix is analogous to the access for vectors, but two values
(separated by commas) are required, the first value indicates the row and the second, the column.

> # Creating the matrix in the workspace

> M <- cbind(A,B)

> M[1,] # access to first row

> M[,1] # access to first column

> M["A","B"] # access by names of rows and columns

2.2 Lists and Data Frames

Lists are more complex but at the same time more flexible. A list is an object with elements of different
classes (even surrogated lists). The access to elements of a list is similar as for vectors. The use of double
square brackets ([[]]) and the use of the dollar symbol ($) are two ways of access frequently used on
lists.

> # Creating a list

> MyList <- list(First="Hello", Second=A, Third=M)

> # Access to elements

> MyList[1:2] # using a numeric index

> MyList[["Third"]] # using element's name

> MyList$First # using dollar symbol

> MyList$Second[3] # inside of an element

> MyList$Third[5,2]

One of the most common objects used to handle data in R is the data.frame. Data frames resemble
matrices, but the main difference is that a matrix can contain information belonging to only one class
(e.g. numeric, factor or logical), while in the data frame every column can be of a different class.
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> ## The data.frame

> E <- letters[1:10]

> MyDataFrame <- data.frame(First=B, Second=C, Third=E, stringsAsFactors=FALSE)

> summary(MyDataFrame)

First Second Third

Min. : 1.00 Length:10 Length:10

1st Qu.: 3.25 Class :character Class :character

Median : 5.50 Mode :character Mode :character

Mean : 5.50

3rd Qu.: 7.75

Max. :10.00

The access to elements of a data.frame can be done in the same way as for a matrix. Additionally
you can access to the columns by using the symbol $, as for lists.

> MyDataFrame[,"Second"]

[1] "i" "d" "r" "y" "v" "j" "g" "s" "g" "p"

> MyDataFrame$First

[1] 10 9 8 7 6 5 4 3 2 1

2.3 Functions and Loops

While operations will be reviewed more into detail during theoretical sessions, here there is a short
introduction to functions and loops. A function is also an object in R. Such functions are usually
represented as foo(argument1=value1, ...), where foo is the name of the function object and in the
brackets and separated by commas you may insert the values for the respective arguments of the function.
You will steadily deal with functions during R sessions, but in some cases you will need to write your
own functions.

> MyFunction <- function(x) (x - 5) * 10

> MyFunction(6)

[1] 10

> MyFunction(c(3,2))

[1] -20 -30

Though loops are not objects, there are some functions executing loops in R. The most common one
is for in combination with if.

> for(i in letters) {

+ print(i)

+ if(i == "d") break

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

Here, there curly brackets enclose many command lines that may be evaluated in every loop.

2.4 Data Import and Export

There are many ways to import data to the workspace in R. One of the most basic ways is using comma
separated values (CSV files) as inputs. It is also possible to import Microsoft Excel files by using the
package xlsx. Previous to the import and export of data, you may check for the working directory

used in the current session. By typing getwd() in the console, you will get the respective path. Since
this path is the place where R will look for files to load, you have to set it according to the location of the
files, for instance by setwd("C:/Rproject"). Notice that the separation between folders and subfolders
are either the common slash symbol (/) or twice the backslash (\\).

> Juniperus <- read.csv("inputs/Juniperus_procera.csv")
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Notice that you will always need to assign the loaded data to an object, otherwise you just get a
print in the console, while the content will get lost after the function finish the work.

For the next example we will load the exemplary data trees (for details, see ?trees). This data set
will be imported as data frame. There are some functions provided to explore the structure and content
of data frames.

> data(trees)

> str(trees)

'data.frame': 31 obs. of 3 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...

> summary(trees)

Girth Height Volume

Min. : 8.30 Min. :63 Min. :10.20

1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40

Median :12.90 Median :76 Median :24.20

Mean :13.25 Mean :76 Mean :30.17

3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30

Max. :20.60 Max. :87 Max. :77.00

> head(trees)

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

4 10.5 72 16.4

5 10.7 81 18.8

6 10.8 83 19.7

> tail(trees)

Girth Height Volume

26 17.3 81 55.4

27 17.5 82 55.7

28 17.9 80 58.3

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0

In this case, str display an overview on the structure of the object trees, while summary shows
statistic summaries of each single variable. The functions head and tile display respectively the first
and the last rows. To write this data set into a file we will use the function write.csv.

> write.csv(trees, "outputs/trees.csv")

For general routines to import data in r, look at the help of read.table or check the manual "R Data

Import/Export" in help.start().

2.5 Basics on R Plotting

The very basic function for plotting in R is plot() and most of the plotting parameters can be set by
using par() (take a look in the help file for more details). Plotting functions are classified into two types,
on the one side the high level functions that produce a whole graphic as in the case of plot(), on the
other side the low level functions are able to introduce single elements in a drawn plot. Some high level
functions offer the possibility to use them as low level, usually by setting the argument add=TRUE.

> plot(trees$Girth, trees$Height, main="Trees") # high level function

> text(18, 65, labels="Height vs. Girth", col="red") # low level function
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2.6 Exercises

� Create a matrix of 10 rows and 10 columns filling it with random digits, then compute the sums of
columns and rows.

� Create a data frame including two variables used for a factorial experiment design (e.g. temperature:
30, 50 and 100 degrees, time: 0, 5, 20 min). Use expand.grid to get all possible combinations of
levels. Randomize sorting of treatments in the data frame.

� Make box plots for the variable Height in the data trees. Check data(iris) and draw box plots
for the variable Sepal.Length separated by Species.

� Prepare a plot for publication.

3 The Spatial Vector Files in R

There is a series of formats available for handling spatial data sets (GIS), but we will focus on the
classes related to Spatial*DataFrame, which can content information usually stored in ESRI Shapefiles
(including attribute tables) and can be accessed as data frames. Those object classes are provided by the
package sp.
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3.1 Importing ESRI Shapefiles

To import shapefiles we will use the function readOGR from the package rgdal.

> library(rgdal) # load package to the session

> Africa <- readOGR(dsn="vectors", layer="Africa")

OGR data source with driver: ESRI Shapefile

Source: "vectors", layer: "Africa"

with 762 features

It has 3 fields

The loaded file contains spatial polygons corresponding to the African countries. In such file we can
create a subset, for example considering those countries that are members of Eastern Africa.

> HornAfrica <- Africa$COUNTRY %in% c("Eritrea","Djibouti","Ethiopia",

+ "Somalia")

> HornAfrica <- Africa[HornAfrica,]

> # Display

> plot(Africa, col="grey")

> plot(HornAfrica, col="orange", add=TRUE)

Further type of shapefiles (points and lines) can be also loaded and plotted in a similar way as done
in the QGIS project (alternatively in an ArcGIS project).

> Towns <- readOGR(dsn="vectors", layer="ET_Towns")

OGR data source with driver: ESRI Shapefile

Source: "vectors", layer: "ET_Towns"

with 934 features

It has 22 fields

> Streams <- readOGR(dsn="vectors", layer="ET_Streams")

OGR data source with driver: ESRI Shapefile

Source: "vectors", layer: "ET_Streams"

with 4070 features

It has 5 fields

> Ethiopia <- subset(Africa, COUNTRY == "Ethiopia")

> # Display

> plot(Ethiopia, col="darkseagreen")

> plot(Towns, col="red", add=TRUE)

> plot(Streams, col="darkblue", add=TRUE)

8



We can calculate distances between cities included in the object Towns. Note that such calculation
requires a transformation of the coordinates to a projected reference system, for instance the UTM system,
which uses meters as coordinate units.

> proj4string(Towns)

[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

> Towns_UTM <- spTransform(Towns, CRS("+proj=utm +zone=37 +north +datum=WGS84"))

> Points <- as.data.frame(Towns_UTM[Towns_UTM$TOWN_NAME %in%

+ c("Addis Abeba","Jimma","Dire Dawa"),])

> rownames(Points) <- Points$TOWN_NAME

> Dist <- dist(Points[,c("coords.x1","coords.x2")])

> round(Dist/1000, digits=0) # Distance in kilometers

Dire Dawa Addis Abeba

Addis Abeba 347

Jimma 591 258

Looking into a mileage table from Ethiopia, you may realize that the distance values are not that bad,
although they are underestimated. The question is, which values are the wrong ones?

Dire Dawa Addis Abeba
Addis Abeba 445
Jimma 791 355

3.2 Attribute Joins

As in ESRI shapefiles, elements included in the spatial objects have attributexs in an attribute table. Such
attributes are stored as data frames in the slot data (access through objectName@data). New attributes
can be passed from different sources, for example the populati9on size to the object Settlements. For
it, we have to load the table "KE_Population.csv" to our workspace.

> Regions <- readOGR(dsn="vectors", layer="ET_Regions")

OGR data source with driver: ESRI Shapefile

Source: "vectors", layer: "ET_Regions"

with 11 features

It has 16 fields

> Towns <- readOGR(dsn="vectors", layer="ET_Towns")

9



OGR data source with driver: ESRI Shapefile

Source: "vectors", layer: "ET_Towns"

with 934 features

It has 22 fields

> # Applying joins for urban population in Regions

> Regions$UrbanPop <- Towns$POPURB[match(Regions$NAME_1, Towns$REGION)]

> # Colors for display

> Palette <- grey(1 - as.numeric(ordered(Regions$UrbanPop))/

+ max(as.numeric(ordered(Regions$UrbanPop))))

> # The plot

> plot(Regions, col=Palette)

> text(coordinates(Regions), labels=Regions$UrbanPop, col="red")

116830

0
3891

729

8337

2106

0

5833
0

6253

12761

Accordingly, we can select those cities with a population higher than 250,000 in order to display them
in a map. We will also use the function symbols to produce a display equivalent to bubble (bubble plots).

> VeryBigCities <- subset(Towns, POPURB > 100000)

> plot(Ethiopia, col="beige")

> symbols(coordinates(Towns),

+ circles=Towns$POPURB/max(Towns$POPURB, na.rm=TRUE)*0.6,

+ fg="red", bg="red", inches=FALSE, add=TRUE)

> text(coordinates(VeryBigCities), labels=VeryBigCities$TOWN_NAME)
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Calculation of areas by using the function gArea from the package rgeos. Again as the example of
distance calculations, you may transform the coordinate reference system to UTM.

> Waterbodies <- readOGR(dsn="vectors", layer="ET_Waterbodies")

OGR data source with driver: ESRI Shapefile

Source: "vectors", layer: "ET_Waterbodies"

with 380 features

It has 5 fields

> plot(Ethiopia, col="gold")

> plot(Waterbodies, col="blue", border="darkblue", add=TRUE)

> # Load package rgeos for area calculation

> library(rgeos)

> Waterbodies_UTM <- spTransform(Waterbodies,

+ CRS("+proj=utm +zone=37 +north +datum=WGS84"))

> # Total area covered by lakes (in square kilometers)

> gArea(Waterbodies_UTM, byid=FALSE)/1000000

[1] 18882.41

> # Respective area size to attribute table

> Waterbodies$Area <- gArea(Waterbodies_UTM, byid=TRUE)/1000000

3.3 Creating Spatial Objects

Spatial objects can be created from non-spatial ones, for example using coordinate values from a table.
For SpatialPointsDataFrame the way to produce it is straight forward. We will take from the data sets
a table containing observations of Juniperus procera in Ethiopia. Such table content coordinate values in
the columns decimalLongitude and decimalLatitude.

> Map <- read.csv("inputs/Juniperus_procera.csv")

> coordinates(Map) <- ~ decimalLongitude + decimalLatitude # get spatial

> proj4string(Map) <- CRS("+proj=longlat +datum=WGS84") # get projection

A bit longer is the way to create spatial objects containing lines or polygons. For example, the data
set Route.csv contains coordinates values along the way from Addis Ababa to Dire Dawa.

> Route <- read.csv("inputs/Route.csv")

> Route <- Line(Route) # to Line object

> Route <- Lines(list(Route), ID="AddisToDire") # to Lines object
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> Route <- SpatialLines(list(Route),

+ proj4string=CRS("+proj=longlat +datum=WGS84")) # to SpatialLines

> Route <- SpatialLinesDataFrame(Route,

+ data.frame(Start="Addis Abeba", End="Dire Dawa"),

+ match.ID=FALSE) # to SpatialLinaesDataFrame

> # Display

> plot(Ethiopia, col="lemonchiffon")

> plot(Map, col="red", add=TRUE) # Juniperus procera points

> plot(Route, col="blue", add=TRUE) # Route Addis Abeba to Dire Dawa

The way to get polygons in spatial objects is analogous but using the sequence of functions Ploygon,
Polygons, SpatialPolygons and SpatialPolygonsDataFrame. Once done the transformations, we are
able to write the output as GIS data sets using the function writeOGR.

> # write ESRI shapefiles

> writeOGR(Map, dsn="outputs", layer="Juniperus", driver="ESRI Shapefile",

+ overwrite_layer=TRUE)

> writeOGR(Route, dsn="outputs", layer="Route", driver="ESRI Shapefile",

+ overwrite_layer=TRUE)

> # write KML files (Google Earth)

> writeOGR(Map, dsn="outputs/Juniperus.kml", layer="points", driver="KML",

+ overwrite_layer=TRUE)

> writeOGR(Route, dsn="outputs/Route.kml", layer="lines", driver="KML",

+ overwrite_layer=TRUE)

3.4 Reading GPX Files

The function readOGR have also routines for the import of GPX files, which is an exchange file format
used byGarmin GPS devices. Two examples are provided here, one for a tracklog and one for waypoints.
The tracklog was collected during a trip from Awash to Harer. The waypoints are sites of interest marked
during the trip.

> GPStrack <- readOGR(dsn="vectors/track_awash_harar.gpx", layer="tracks")

OGR data source with driver: GPX

Source: "vectors/track_awash_harar.gpx", layer: "tracks"

with 1 features

It has 13 fields
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> GPSwaypoints <- readOGR(dsn="vectors/waypoints_awash_harar.gpx",

+ layer="waypoints")

OGR data source with driver: GPX

Source: "vectors/waypoints_awash_harar.gpx", layer: "waypoints"

with 17 features

It has 23 fields

> plot(GPStrack, col="red")

> points(GPSwaypoints, pch=16, col="blue")

> text(Towns, labels=Towns$TOWN_NAME, cex=0.7)

> # Making map nicier

> box()

> axis(1)

> axis(2)

> grid()
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In the case of track logs, there is also the possibility to load single points of the tracks with the
respective records (altitude and time). In the following exercise we attempt to produce a profile of the
trip according to the altitude values recorded by the device along the way.

> GPStrack_points <- readOGR(dsn="vectors/track_awash_harar.gpx",

+ layer="track_points")

OGR data source with driver: GPX

Source: "vectors/track_awash_harar.gpx", layer: "track_points"

with 6521 features

It has 26 fields

> # Calculating progress in m

> GPStrack_points <- spTransform(GPStrack_points,

+ CRS("+proj=utm +zone=37 +north +datum=WGS84"))

> Coords <- coordinates(GPStrack_points)

> Progress <- sqrt(diff(Coords[,1])^2 + diff(Coords[,2])^2)

> GPStrack_points$Progress <- cumsum(c(0, Progress))

> # Plot track profile

> with(GPStrack_points@data, plot(Progress, ele, type="l", col="blue"))
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3.5 Exercises

� Calculate proportion of surface of the country covered by water bodies. Does it change by using
different coordinate reference systems?

� Carry out similar tasks by using your own data sets.

4 Raster Data Files in R

Raster Data are collections of pixels containing numeric values. Such data sets are recognised as images
(e.g. satellite imagery, aerial photographs) but may also content variables other than values for colors
such as altitude, climatic conditions, terrain, etc.

4.1 Import and Basic Process of Rasters

During this workshop we will use the package raster, which provides de classes Raster* (e.g. Raster-

Layer, RasterStack, etc.).
In the first example, we will import elevation models obtained form ASTER GDEM (a product of

METI and NASA), which were downloaded from EarthExplorer. Such models have a resolution of 1
arc-second. Since this data set is distributed in 1 by 1 degree tiles, we require for example 8 tiles to
display elevation landscape of the Gambela Region (displayed in the next figure).

So, the very first step is to load those tiles in the workspace and then to merge them into one data
set.

> library(raster)

> Gambela <- subset(Regions, NAME_1 == "Gambela") # The region Gambela

> Files <- c(

+ "N07_E032.tif",

+ "N07_E033.tif",

+ "N07_E034.tif",

+ "N07_E035.tif",

+ "N08_E032.tif",

+ "N08_E033.tif",

+ "N08_E034.tif",

+ "N08_E035.tif")

> Files <- file.path("rasters", Files) # relative paths of single tiles

> DEM <- lapply(Files, raster) # load using function raster
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> DEM <- do.call(merge, DEM) # merging tiles in one data set

> Ext <- extent(bbox(Gambela))

> DEM <- crop(DEM, Ext, snap="out") # cropping by the extension of Gambela

> # Display result

> plot(DEM)

> plot(Gambela, lwd=2, border="red", add=TRUE)
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Notice that the object Files only contain the relative paths of the GeoTiff files (relative to the
working directory), while lapply executes the function raster to import those files and store them
as elements of a list (object DEM). The function do.call apply the method merge for the tiles in DEM,
merging them into one RasterLayer. Finally crop cuts the resulting raster according to the extension
of the Gambela Region.
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4.2 Working with Digital Elevation Models

Further exercises use an elevation model downloaded from the WorldClim database (subset for Eastern
Africa). We will then display the extention of Ethiopia.

> Altitude <- raster("rasters/alt.grd")

> Ext <- extent(bbox(Ethiopia))

> Altitude <- crop(Altitude, Ext, snap="out")

> # Display

> plot(Altitude)

> contour(Altitude, add=TRUE)

> plot(Ethiopia, border="red", lwd=2, add=TRUE)
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The function terrain offers options to calculate the slope and exposition after DEMs and work using
“moving windows” (if you are interested on those techniques, look at the help for the function focal). In
addition we will produce a display of hill shades.

> Slope <- terrain(Altitude, opt="slope")

> Aspect <- terrain(Altitude, opt="aspect")

> Hill <- hillShade(Slope, Aspect, 40, 315)

> # Display

> plot(Hill, col=grey(0:100/100), legend=FALSE)

> plot(Ethiopia, border="red", lwd=2, add=TRUE)
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4.3 Raster Calculation

Rasters contain numeric information and resemble matrices in their structure. Therefore calculations can
be carried out between matrices, provided that rasters have the very same resolution, the same projection
and the same extent. In other words, they may have a perfect spatial matching of pixels. Such kind of
files can be contained by objects of the class RasterBrick (single multiple-layer file) or RasterStack

(single files for every layer).
In the following example, we will work with a subset of the WorldClim database. This database

provide an elevation model and climatic variables obtained from interpolation of historical records from
climatic stations distributed worldwide (for more details, see Hijmans et al. 2005).

> Files <- c(

+ "alt.grd", # Altitude (m asl.)

+ "bio_1.grd", # Mean temperature (degrees*10)

+ "bio_5.grd", # Max temperature in warmest month (degrees*10)

+ "bio_6.grd", # Min temperature in coldest month (degrees*10)

+ "bio_12.grd") # Annual precipitation (mm)

> Files <- file.path("rasters", Files)

> # Creating stack

> ClimData <- stack(Files)

> ClimData <- crop(ClimData, Ext, snap="out")

>

Following import, we may convert temperature values into Celsius degrees for further display. We
will additionally calculate the amplitude as the difference between the minimum temperature during
the coldest month (variable bio_6) and the maximum temperature during the warmest month (varaible
bio_5).

> # Convertion of temperatures into Celsius degrees

> ClimData[["bio_1"]] <- ClimData[["bio_1"]]/10

> ClimData[["bio_5"]] <- ClimData[["bio_5"]]/10

> ClimData[["bio_6"]] <- ClimData[["bio_6"]]/10

> # Calculation of amplitude

> ClimData[["amplitude"]] <- ClimData[["bio_5"]] - ClimData[["bio_6"]]

> # Display

> plot(ClimData)
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Such operations can be also carried out using the functions overlay or the function calc. We calculate
amplitude again as follows:

> Vars <- subset(ClimData, c("bio_6","bio_5")) # subset of variables

> Amplitude <- overlay(Vars, fun=function(x,y) x-y) # alternative 1

> Amplitude <- calc(Vars, fun=function(x) x[1]-x[2]) # alternative 2

4.4 Rasterizing and Masking

Information contained as attributes of s SpatialPolygonsDataFrame (slot data) can be also transfered
to raster files. In the following example, we will use a shapefile of the potential natural vegetation of
Ethiopia (obtained from Friis et al. 2010). In this file ther is a numeric index for vegetation units,
included in the attribute table. We will just work with a strip of the country to save some processing
time.

> Altitude <- crop(ClimData[["alt"]], extent(c(35,41,7,9)), snap="out")

> Vegetation <- readOGR(dsn="vectors", layer="ET_Vegetation")

OGR data source with driver: ESRI Shapefile

Source: "vectors", layer: "ET_Vegetation"

with 4265 features

It has 3 fields

> Vegetation_raster <- rasterize(Vegetation, Altitude, "value")

> plot(Vegetation_raster)
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While the function crop is cutting rasters according to extensions, therefore in rectangular shapes,
you may also desire to cut rasters according to shapes of polygons, for example to get all altitude values
of pixels included in Ethiopia.

> Altitude <- mask(ClimData[["alt"]], Ethiopia)

> plot(Altitude)
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4.5 Extracting Data from Rasters

In the folder inputs you will find three files in csv format (comma separated values). Those are tables
containing observations of occurrence of three woody species, namely Acacia mellifera, Hagenia abyssinica
and Juniperus procera. Such observations were obtained from herbarium vouchers, which data are down-
loaded from Global Biodiversity Information Facility by using the package rgbif. The mentioned data
sets contain those observations that are geo-referenced and made in Ethiopia.
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In the following command lines we will display the location of observations for each species. Addi-
tionally, we will select a set of 500 random points distributed across Ethiopia in order to explore climatic
conditions in the whole country (the background). Random points will be selected by using the function
randomPoints of the package dismo.

> Acacia <- read.csv("inputs/Acacia_mellifera.csv")

> Hagenia <- read.csv("inputs/Hagenia_abyssinica.csv")

> Juniperus <- read.csv("inputs/Juniperus_procera.csv")

> # Selecting random points from background

> library(dismo)

> Background <- randomPoints(Altitude, 500)

> # Display

> plot(Altitude)

> points(Background, pch=20, cex=0.3)

> points(Acacia[,c("decimalLongitude","decimalLatitude")], pch="+", col="red")

> points(Hagenia[,c("decimalLongitude","decimalLatitude")], pch="+", col="brown")

> points(Juniperus[,c("decimalLongitude","decimalLatitude")], pch="+", col="blue")

34 36 38 40 42 44 46

2
4

6
8

10
12

14
16

0

1000

2000

3000

4000
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

+

++

++

++

+

++
++

+

+

+
+++

+++++
+++++

+
++++

+

+

++

+

+++
+

+

+
+

+
+

+
++

+

+++++ ++++++++++++++++++

++

+++++++++ +++++++

+

+

++

+

+++++

+

+++++++++ +

++++

+ +

+

+

++

+

++

+

++

+

++

+

+

+

++ ++

+

+

+

+

+

+

++ ++

++ ++

+

+

+

++

++

+++

++

+

+

++

+++

+++++++++++++++ +++++++++++++
+

++++

++++++

+++

+

++

+

+++
+

+

++ +++ +

+

++

++

+++

+

++

+

+

++

+

+

+

+

+

+

+

+ ++

+

+

+

+

++

+

+ +

+

+

+

+++

+

Botanists and plant ecologists will wander, if some climatic conditions may determine the occurrence
of those species. In other words, which are the preferences of those species regarding climatic conditions
(ecological answer). So, we will create a SpatialPointsDataFrame object including all the points shown
in the previous map in order to extract the values of climatic variables from the object ClimData.

> Distrib <- list()

> for(i in c("Acacia","Hagenia","Juniperus")) {

+ Distrib[[i]] <- with(get(i), data.frame(x=decimalLongitude,

+ y=decimalLatitude, species=i))

+ }

> Distrib[["Background"]] <- data.frame(x=Background[,1], y=Background[,2],

+ species="Background")

> Distrib <- do.call(rbind, Distrib)

> # Now convert it to spatial object

> coordinates(Distrib) <- ~ x + y

> proj4string(Distrib) <- CRS("+proj=longlat +datum=WGS84")

With this object we can now extract the values of climatic variables using the function extract.

> Distrib <- extract(ClimData, Distrib, sp=TRUE)

> # Display
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> par(mfrow=c(2,2), las=1, mar=c(3,7,5,1))

> boxplot(alt ~ species, data=Distrib, col=c("red","brown","blue","grey"),

+ main="altitude", horizontal=TRUE)

> boxplot(bio_12 ~ species, data=Distrib, col=c("red","brown","blue","grey"),

+ main="rainfall", horizontal=TRUE)

> boxplot(bio_1 ~ species, data=Distrib, col=c("red","brown","blue","grey"),

+ main="temperature", horizontal=TRUE)

> boxplot(amplitude ~ species, data=Distrib, col=c("red","brown","blue","grey"),

+ main="amplitude", horizontal=TRUE)
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After a quick view on the resulting boxplots, we can stat that H. abyssinica and J. procera prefer
high altitudes and places with relatively high rainfall, low temperatures and low amplitude. On the other
hand, A. mellifera is a species growing in lowlands, in places with low rainfall and high temperatures,
while it seems to be relatively indifferent to amplitude of temperature.

4.6 Exercises

� Create a SpatialPointsDataFrame for the observations of each woody species as explained in
chapter 4.4. Plot them in a map with a personalised layout and add a legend (look the help for
legend).

� Extract altitude (or other environmental variable) for each type of Potential Natural Vegetation
from Ethiopia.

� Check in the rasters folder for the SRTM files. Process them to get a digital elevation model with
the shape of Ethiopia.

� In the tracklog Marigat to Niahururu, extract altitude values from the provided elevation model
(alt.grd). Compare values from elevation model with those measured by the GPS device.

� Draw an altitude profile for the trip from Addis Ababa to Dire Dawa extracting altitude values from
the provided elevation model. Use for the profile alternativelly distance progress and longitude as
x axis.

� Check the climatic distribution of towns in Ethiopia, comparing with the background.
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